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Microcomputer referents in elementary mathematics:
A sample approach.

Michael L. Connell
University of Illinois at Urbana-Champaign

The view is becoming widely accepted that consequential knowledge does not

include rote memorization. As Sternberg (1984a, 1984b) puts it, consequential knowledge

involves deciding what information is important to learn and then incorporating that

information into the individual's already existing knowledge base. Yet, in looking at the

mathematical experiences of elementary aged students Davis (1974), Erlwanger (1973),

and more recently Peck, Jencks, and Connell (in press) have found that instructional focus

has typically been placed upon memorizing facts and rules as opposed to making sense of

the subject. Rather than developing skills requiring the use of information in a meaningful

way, students in elementary mathematics spend large amounts of time processing,

memorizing, and sorting collections of data - the very tasks performed so well by computer

technology . Quite often the problem solving experiences which are offered consist of

problem specific heuristics with little instruction in generating generalizable strategies for

manipulating information in goal-oriented situations. Students taught in this fashion come

to view mathematics as a system of rules to be memorized and retrieved (Erlwanger, 1973;

Schoenfeld, 1983; Garofalo & Lester, 1985). In their minds successful mathematical

thinking in the classroom becomes either rote recitation of tables or case specific utilization

of rules, memorized facts, or miscellaneous data. Lacking the ability to make decisions

based on their own judgment, verifying the correctness of an answer or a process is left to

a source outside of themselves.

Peck, Jencks and Connell (1985) suggest that a primary cause for these difficulties

in elementary mathematics lies in application of a rote memorization teaching methodology

wherein students are routinely required to memorize and practice facts and procedures

isolated from each other and from any real world referent. In addition to the fragmentation
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effects this has upon the curriculum, such an approach effectively sidesteps development of

a real world referent base. Keil (1984) points out that humans are capable of engaging in

complex chains of problem solving when the problem solving is embedded within, and

done in reference to, a specific knowledge structure or referent base. However, when

conceptual referents are not present for the mathematical symbols being manipulated,

Schoenfeld (1983, 1985) and others suggest that people construct undesirable models

concerning knowledge and their role in acquiring it. These models subsequently block the

development of unifying structures for the information they possess and contribute to the

problem of inert knowledge as described by Whitehead (1929). For example, problems are

viewed as always- having unique and specific answers which are wholly determined not by

the logic of the problem but by the answer book, a neighbor, or the teacher. As a result,

problems in mathematics are approached from unproductive viewpoints, with greater

emphasis placed upon recalling memonzed rules than in analyzing the situation to be

evaluated.

What is needed is a change of emphasis in mathematics education. Taking a clue

from Keil (1984), structuring knowledge with respect to real world referents should play a

substantially more important role than rote mastery of arbitrary rules governing algorithms

and procedures. When students possess such a reality base they are able to recombine

features into new, successful relations in the course of problem solving. Without such a

mapping from the abstract symbols to the real world, it is difficult to apply even elementary

mathematical metacognitive techniques (Campione, Brown, and Connell, in press).

Lacking concrete referents, students are unable to identify when the problem situation

causes misapplication of their developed rules.

In spite of the mechanical and computational focus of traditional mathematics

curricula, there emerge groups of children who seem to naturally organize their thinking in

ways that are conducive to problem solving. Kachuk (April, 1987), Connell (1988a),

Connell and Harnisch (in press), and others report that the thought processes and
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structuring strategies these students utilize are markedly different from other students in the

same classroom settings, even though their peers may be considered equally capable in

other respects. Students who are good problem solvers possess many linkages relating the

subject matter to elements of their real world experiences (Peck and Jencks, 1979; Connell

and Harnisch, in press). These linkages provide a referent base, allowing them to assume

ownership over their work and to readily address questions such as "How can you tell?" or

"What would happen if ...?" in regard to their final answer, the process by which the

answer was obtained, or the underlying premises upon which the choice of procedures

were based.

Unfortunately, this ability to attack and solve problems often appears to have

developed independently of school experiences. Evidence suggests that many educational

experiences in traditional settings contribute to the formation of barriers which inhibit

further conceptual growth. As Spiro, Vispoel, Schmitz, Samarapungavan, and Boerger (in

press) discuss, instructional problems develop when students routinely memorize facts

without opportunity to relate these facts to the real world and its intricacies. As discussed

earlier, this situation is particularly problematic in elementary mathematics. Klahr (1984)

notes that children often display the ability to produce and manipulate symbols well before

they can demonstrate understanding concerning what the symbols represent. Furthermore,

students routinely make verbal assertions which make perfect syntactic sense, yet lack a

semantic referent. Cobb (1987) describes this clearly in his analysis of a group of second

graders' understandings of 10. When the child says that the 4 in 48 means four tens, the

child is often merely demonstrating verbal fluency based upon the right and left positional

labels. The child often does not recognize that the 4 represents 40 objects. To the child,

such symbols bear no relationship to recognizable facets of the world; hence, the child fails

to perceive the underlying ideas and concepts. Nonetheless, a demonstrated ability in the

production and manipulation of symbols, however arbitrary or nonsensical these symbols

may appear to the student, may lead to instruction proceeding before the student has
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grasped the concepts that the symbols represent. Given these perceptions and strategies, it

is little surprise that students do not come to value problem solving skills and do not learn

them well. They lack the conceptual building blocks with which to link their memorized

data into meaningful structures.

In order to correct this situation a substantially different curriculum base,

presentation schemata, system of psychological rewards, and setting of instruction should

be provided. A fir;t step in facilitating this goal is placing children in situations

emphasizing problem solving skills, requiring them to develop and apply their own logic

structures. A legitimate problem in this setting would involve working on concepts that are

within reach given currently possessed knowledge structures. The problem should be

new, but within the conceptual grasp and existing analytic powers of the students.

Problem solving strategies involving posing questions, analyzing situations, translating

results, illustrating results, drawing diagrams, and using trial and error should be

developed and utilized to develop a referential base for later application. These problem

solving activities should take place at a concrete level, with problems designed to achieve

curriculum goals using elements familiar to the child. As Bruner (1978) points out, we

must try to make students at least as self conscious about their strategies of thought as they

are about their efforts to commit things to memory. In addition to this goal, however, the

problem situations must contain the opportunity for children to assume ownership over

issues of correctness of result and process.



This paper uses an instructional model proposed by Connell (1986), as adapted

from Robert Wirtz's (1979) model of mathematical problem solving.

Instructional Model

Memory/Recall Instructor-Posed Self-Posed
Problem Problem

Manipulatives

Sketches

Mental Pictures

Abstractions

As the above figure shows, a learner would proceed from initial use of

manipulatives through abstraction via four transitional problem types. For the purposes of

discussion we shall refer to these problem types as:

1) Manipulatives

2) Sketches

,_Wlental Pictures

4) Abstraction

An example of physical manipulatives in this model might be a pile of pebbles used

to illustrate elementary addition. A sketch would then be drawn recording the actual pile of

pebbles. A mental picture would consist ofan internal representation of the external

sketch. Abstraction would occur when addition is no longer described in terms of

countable piles of pebbles, but in terms of pure number.
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I) Manipulatives. The power of a physical manipulative lies in the structures which

can be built upon it, the linkages it enables in the mind of the student, and its power in

explaining concepts. The merit of a manipulative is that it can be used to simplify

information, generate new propositions, and increase the manipulability of a body of

knowledge.

In thinking of manipulatives it is important to remember that all problems have their

origins in the real world about us. The symbolism adopted derives as a result of formal

attempts to solve those problems.. Although there is certainly a single correct answer for

the majority of problems, Hogben (1983) points out that much of what we accept as the

correct method for solving a specific problem has resulted from accidents of notation which

have little to do with the underlying logic or mathematics of the situation. By focusing

upon tLie logic that lies beneath the rules, however, we can expand the role of conscious

control significantly.

2) Sketches. The sketches follow the form of the original manipulatives as closely

as possible. Ideally, the mapping from manipulative to sketch, sketch to mental picture,

and finally mental picture to abstraction should be as smooth as possible. If we select an

appropriate manipulative, the subsequent sketch draws much of its descriptivz power from

it. One way of insuring that mapping from manipulative to sketch will occur naturally is to

tie the presence of a recording scheme reflecting the real world nature of the manipulative,

in sketch form, at the earliest levels of manipulative problem solving (Peck, 1979).

3) Mental Pictures. In developing a mental picture the student must internalize the

informational structure encoded in the sketch. At this time there are many conflicting

theories concerning the mechanism:, behind the creation and utilization of mental imagery as

reflected in the work of Cooper & Shephard (1984), Sawyer (1964), Jencks & Peck

(1972) Tweney (1987) and others. They agree, however, that whatever is going on in the

brain when we have an image produces a representation possessing useful functional

properties in structuring and organizing information. In a quote attributed to Albert
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Einstein it is said that he arrived at the theory of relativity by "visualizing.. effects,

consequences, and possibilities" through "more or less clear images which can be

'voluntarily' reproduced and combined." (Cooper & Shephard, 1984) In applying this

model one should exercise care, lest familiarity with a sketch be confused with possession

of the underlying mental representation. A sketch is based upon one instantiation of a

specific problem type; a mental representation corresponds to a more generalized and

broadly applicable knowledge structure.

4) Abstraction. The final step lies in the ongoing mental structuring of experience

into a more abstract and formal setting. At this point the student has completed the

sequence of internalizing the real problem into justifiable processes by which it may

be solved. This setting can then be used in future problems and as a stepping stone

towards independent investigations. If we are successful in following the steps outlined in

this model the student will possess not just a single answer schema, but an entire structural

linkage to be utilized by the student under varied circumstances. The student will have

developed conceptual building blocks which may be used in later, more complex,

endeavors in problem solving.

In an effort to apply this research base to actual classroom teaching experience has

suggested that the four problem types should each be presented in three phases (Connell

1981, 1984, 1988)

1) Memory /Recall

2) Instructor Posed Problem

3) Self Posed Problem.

1) Memory /Recall This phase consists of committing to memory the symbolism of

the referent and assorted terms with which it may be labeled. In a very real sense we are

attempting to provide the basis for a common 'language' to be used by both students and

teachers in talking about problem situations. In terminology, terms are kept to a minimum

with essential terms often given in the natural language of the child. For elementary
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mathematics, it is of prime importance that the language be clearly presented, defined, and

mutually understood (Davis, 1974, 1979; Cobb, 1988). It is equally important that the

child is comfortable with the symbolism being suggested (Confrey, 1988).

Once the teacher is sure that the basic terminology and symbolism is clear to the

students the second phase is entered.

2) Instructor Posed Problems As may have been surmised from the information

presented thus far, there is much important work which must be done prior to actual

presentation of a problem in the classroom. In most traditional models, however,

instruction begins at this point. Failure to set the stage at this point is a primary cause of

many of the blockages reported in the introduction. Provided the students have been

properly prepared, the instructor should tc pose problems which relate to the referent

provided and lead to internalization of the concepts presented in the problem situation.

Problems at this level have the added virtue of being soluble by the student's usage

of the referent itself. In these cases, the referent becomes the gauge of correctness of the

child's work. It is true that the teacher must still correct the student, but only in a manner

that enables the learner to assume ownership of correctness. This ownership is assumed

by the student's reliance upon and use of the knowledge structures created through referent

use.

3) Self-Posed Problems It is unfortunate that in many classrooms the instruction

cycle is complete with the teacher's presentation of sample problem types. If we are to be

successful in teaching problem solving, we must allow the students to pose problems.

Bruner puts this very well when he states

A body of knowledge, enshrined in a university faculty and
embodied in a series of authoritative volumes, is the result of
much intellectual activity. To instruct someone in these
disciplines is not a matter of getting him to commit results to
mind. Rather, it is to teach him to participate in the process
that makes possible the establishment of knowledge

(Bruner, 1978. p. 72)
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In this model of instruction we allow students the opportunity to use the developing

referent to pose and investigate problems of theirown. It is extremely important that this

be allowed, as it is at this point the children develop the essential linkages which later serve

to tie their data into useful problem solving structures (Case, Kurland, Daneman &

Goldberg, 1982). It is during these independent investigations that we can best promote

the development of self accounting. This self accounting then enables the student to

progress beyond adaptive behavior to the conscious application of logic and reasoning.

Furthermore, it is in independent investigation that the child begins to develop a sense of

ownership over their problem solving strategies (Jencks & Peck, 1973; Peck & Jencks,

1981). This ownership establishes self-rewarding sequences and becomes an incentive

towards further learning. When a student is capable of posing and solving problems this

becomes a reinforcement for further problem solving attempts in the future.

It is helpful to bear in mind that each of these three phases can occur in a single

instructional period. Robert Wirtz (1979) has reported that: "At a single setting children

can move from one cognitive level to another -- from remembering experiences, to solving

problems, to making independent investigations."

In using these problem types and sequencing suggestions it is helpful to observe

two trends which occur as children gather experience in problem solving. First , they

become more nearly exhaustive in their processing of information presented in the problem,

and consider all or almost all of the information presented (Sternberg 1984a, 1984b).

Secondly, they spend relatively more time in planning how to go about solving a problem,

and less time in actually solving it (Chi & Glaser, 1985).
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A sample application.

The power and potential of the microcomputer can play a much greater role than is

currently utilized in helping students make the leap from the sketch to the abstraction. The

tremendous flexibility of the microcomputer makes it possible to create learning

environments and micro-worlds utilizing the very presentation schemata, system of

rewards, and instructional settings hinted at earlier (Bransford, Hasselbring, Littlefeild and

Goin, in press). In an effort to address this need, a microcomputer based interactive icon

processor was developed for use in helping students construct a referent base for solving

systems of simultaneous linear equations (Connell and Rav lin, 1988). This icon processor

makes use of a well developed and flexible mental representation in the form of user-

controllable graphic objects (icons) which are in turn based upon plausible physical

manipulatives. The current program is written in the IBM Handy authoring language and is

implemented on a 640K IBM PC AT with an EGA graphics card. Initial efforts

concentrated upon creating a flagpole world within which problems involving two

equations and two unknowns may be addressed and solved. Future work will be done in

expanding this system to handle larger systems of equations using the HyperCard on the

Apple Macintosh series computer.

In the flagpole world as currently constructed, flagpoles are constructed graphically

on the computer screen using various numbers of labeled long and short flagpole sections,

corresponding to variables in formally presented algebraic equations. The student is

initially presented with a problem and a graphic representation showing the lengths of two

distinct flagpoles formed from integer combinations of long and short sections. These

initial flagpoles correspond to a consistent system of two equations, each of which has two

unknowns. The student's goal is to use the icon processor to derive the lengths of the long

and short sections. Various operations are available to the student for manipulating the



flagpoles in working towards a solution. For instance, flagpoles may be made longer by

integral coefficients, corresponding to the elementery row operation of multiplying a single

equation by a constant; flagpoles can be compared and the difference computed,

corresponding to the elementary row operation of subtracting one equation from another,

and so on. At each stage of this process the newly created flagpoles are displayed

graphically together with their associated values, if known, and this information is available

for further use by the student. Comparing strategically constructed flagpoles leads to

derivation of the lengths of the component sections, equivalent to solving the system for

each unknown.

To see how this might be done, consider the following example from Connell and

Ravlin (1988):

A flagpole factory has two different machines used to manufacture
flagpole sections. These machines can be set to make any length of
section, but once set they cannot be changed until the next dat. On
Monday there were two different lengths of flagpole sections, one
longer than the other. The length of three of the shorter sections and
one of the longer is forty-five feet. The length of two of the longer
sections and one of the shorter is sixty-five feet. What are the
lengths of each flagpole section?

Solution Steps:

1) Draw the flagpoles to represent the problem facts:

Fact 1:

Fact 2:

45
I

1L + 3S

65
I

2L 4. 1S
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2) Make Fact 1 twice as long to get a common number of long sections (this
corresponds to the elementary row operation of multiplying an equation by a
non-zero constant).

90
I

Fact 1: I

Fact 2:f

I Milli
2L + 6S

65
I

I I I

2L + 1S

3) Remove Fact 2 from Fact 1 (this corresponds to subtracting one row in
the matrix from another).

25
I

Fact 1.1 I I I I I

5S

Fact 2:

65
I

2L + 1S

4) Divide Fact 1 by 5.
5

Fact 1: 1-----I
S

65
I

Fact 2:1
I I I

2L + 1S
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5) Enter the length found for the short section into the other flagpole (i.e.,
backsubstitute for the value of the known variable).

Fact 1:
S

Fact 2:1

2L

65
I

6) Remove the length found for the known section from Fact 2 (i.e.,
eliminate the effect of the known variable).

5

Fact 1: I I

S

60
I

Fact 2:1

2L

7) Divide Fact 2 by 2.
rJ

Fact 1: 1---I
S

10

Fact 2:11----1
L



J

8) The length of each type of flagpole section (i.e., the value of each variable is
now determined. Long sections (L) are 30 feet long; short sections (S) are
5 feet long.

Such a micro-world consisting of dynamically changing configurations of graphics

objects, each with an associated set of properties, is ideally implemented on a

microcomputer. The icon processor developed thus far is capable of manipulating

flagpoles according to the user's directions, although more is planned for it in future

versions. The program has the potential to lead the learner to understand concepts

underlying linear algebraic algorithms. For example, when the student uses a multiple of

one flagpole and subtracts this from another flagpole to remove all sections of a certain type

the student has, in a formal sense, accomplished the elimination of one of the variables.

Once the length of the remaining section type is determined, this value can then be used to

determine the length of the other section. As all work is done from within a graphical

representation, this is done quite intuitively by using the program to compare developed

icons and to perform interesting manipulations of these quantitative objects. When view

this sequence of operations is viewed from a formal perspective, however, the student is

building a flexible referent for later formal concepts such as Gaussian elimination and back-

substitution.

For a computer-assisted instructional program to be useful, intelligible feedback

must be provided by the program to the student. Furthermote, for instructional purposes,

we must provide more than a black-box which always gives the right answer, the box itself

must be transparent and its methods analogous to those ultimately desired of the student.

The developed expert capable uses thought processes similar to those found in a skilled

user (Peck and Jencks, in press) and is available to act as an advisor when help or feedback

is needed. As currently implemented the expert is responsive to individual differences in

problem solving strategy. Even in simple two by two systems of equations, multiple

solution paths are possible. Either variable may be solved for first, although given the
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configuration of the problem it may be more economical in terms of the number of

operations to be performed, to choose one variable over the other. Although there may be a

unique optimal solution, what is more important to reinforce is the general strategy by

which any system may be solved. The expert does not force a single solution path upon

the student. If the student is determined to solve for the long section first and asks the

expert for help the next step in that solution path will be provided, even if it might be easier

in the particular system to solve for the short section first. If the student has no idea as to

hoW to proceed, the expert will present the easiest solution path (i.e., the one requiring the

fewest steps). Furthermore, if the student has developed from the original problem facts

any flagpole which might lead him or her closer to the solution, the expert will use that

flagpole in suggesting how to proceed, rather than constructing a new flagpole which might

lie on a different solution path and possibly confuse the student.

In addition to providing expert feedback, the program can play other important roles

in the educational process. The computer keeps a chronological record of the operations a

student , as well as the number, content, and sequencing of hints given. This trace can

illustrate differences in the approach utilized during successful and unsuccessful attempts at

problem solving. Such information can be invaluable in determining the domain

knowledge, heuristics, and the control strategies utilized by the students which, as argued

by Collins, Brown and Newman (in press). is critical in the design of effective learning

environments.
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